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Abstract
Using the algebraic geometric approach of Berenstein et al (hep-th/005087 and
hep-th/009209) and methods of toric geometry, we study non-commutative
(NC) orbifolds of Calabi–Yau hypersurfaces in toric varieties with discrete
torsion. We first develop a new way of getting complex d mirror Calabi–Yau
hypersurfaces H ∗d

� in toric manifolds M
∗(d+1)
� with a C∗r action and analyse

the general group of the discrete isometries of H ∗d
� . Then we build a general

class of d complex dimensional NC mirror Calabi–Yau orbifolds where the
non-commutativity parameters θµν are solved in terms of discrete torsion and
toric geometry data of M

(d+1)
� in which the original Calabi–Yau hypersurfaces

are embedded. Next we work out a generalization of the NC algebra for generic
d-dimensional NC Calabi–Yau manifolds and give various representations
depending on different choices of the Calabi–Yau toric geometry data. We
also study fractional D-branes at orbifold points. We refine and extend the
result for NC (T 2 × T 2 × T 2)/(Z2 × Z2) to higher dimensional torii orbifolds
in terms of Clifford algebra.

PACS numbers: 02.40.Gh, 11.25.−w

1. Introduction

Non-commutative (NC) geometry plays an interesting role in the context of string theory [1]
and in compactification of the matrix model formulation of M-theory on NC torii [2–7], which
has opened new lines of research devoted to the study of NC quantum field theories [8]; see also
[9–22]. In the context of string theory, NC geometry is involved whenever an antisymmetric
B-field is turned on. For example, in the study of the ADHM construction D(p−4)/Dp brane
systems (p > 3) [23], the NC version of the Nahm construction for monopoles [24] and in
the study of tachyon condensation using the so-called GMS approach [25], see also [26–30].
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More recently, efforts have been devoted to going beyond the particular NC Rd
θ , NC T d

θ

geometries [28–36]. A special interest has been given to build NC Calabi–Yau manifolds
containing the commutative ones as subalgebras and a development has been obtained for the
case of orbifolds of Calabi–Yau hypersurfaces. The key point of this construction, using a NC
algebraic geometric method [37], see also [38, 39], is based on solving non-commutativity
in terms of discrete torsion of the orbifolds. In this regard, there are two ways one may
follow to construct this extended geometry: (i) a constrained approach using purely geometric
analysis, in which we are interested in this paper, and (ii) crossed product algebra based on
the techniques of the fibre bundle and the discrete group representations. For the first method,
it has been shown that the T 2 × T 2 × T 2

Z2 × Z2
orbifold of the product of three elliptic curves with

torsion, embedded in the C6 complex space, defines a NC Calabi–Yau threefold [38] having
a remarkable interpretation in terms of string states. Moreover, on the fixed planes of this
NC threefold, branes fractionate and local complex deformations are no longer trivial. This
constrained method was also applied successfully to Calabi–Yau hypersurfaces described by
homogeneous polynomials with discrete symmetries including K3 and the quintic as particular
geometries [38–42]. NC algebraic geometric approach for building NC Calabi–Yau manifolds
has very remarkable features and is suspected to have deep connections both with the intrinsic
properties of toric varieties [43–45] and the R matrix of Yang–Baxter equations of quantum
spaces [46–48].

In this study we extend the Berenstein and Leigh (BL for short) construction for NC
Calabi–Yau manifolds with discrete torsion by considering d-dimensional complex Calabi–
Yau orbifolds embedded in (d + 1) complex toric manifolds and using toric geometry method
[49–52]. In particular, we build a general class of d complex dimensional non-commutative
mirror Calabi–Yau orbifolds for which the non-commutativity parameters θµν are solved in
terms of discrete torsion and toric geometry data of dual polytopes �(Md). To establish these
results, we will proceed in three steps.

(i) We consider pairs of mirror Calabi–Yau hypersurfaces Hd
� and H ∗d

� respectively embedded
in the toric manifolds Md+1

� and M
∗(d+1)
� , where � is their attached polyhedron, and develop

a manner of handling these spaces by working out the explicit solution for the so-called
Yα = ∏k+1

i=1 x
〈Vi ,V

∗
α 〉

i invariants of the C∗r actions and their mirrors yi = ∏k∗
I=1 z

〈V ∗
I ,Vi 〉

I . The
construction we will give here is a new one; it is based on pushing further the solution of
the Calabi–Yau constraint equations regarding the invariants under the C∗r toric actions.
Aspects of this analysis may be approached with the analysis of [52, 53], but the novelty
is in the manner we treat the C∗r invariants. Then we focus our attention on H ∗d

�

described by the zero of a homogeneous polynomial P�(z) of degree D and explore the
general form of the group of discrete symmetries � of H ∗d

� using the toric geometry data{
qa

i ;Vi; 1 � i � k + 1; 1 � a � r; d = (k − r)
}

of the polyhedron �.
(ii) We show that for the special region in the moduli space where complex deformations

are set to zero, the polynomials P� defining the Calabi–Yau hypersurfaces have a larger
group of discrete symmetries �0 containing as a subgroup the usual �cd one; �cd ⊂ �0.
We treat separately the two corresponding orbifolds O0 and Ocd and study their link to
each other.

(iii) Finally, we construct the NC extension of the Calabi–Yau hypersurfaces by first deriving
the right constraint equations, and then solving non-commutativity in terms of discrete
torsion and toric geometry data of the variety.

This method can be applied to higher-dimensional NC torii orbifolds extending the
result of NC (T 2 × T 2 × T 2)/(Z2 × Z2) Calabi–Yau threefolds. In this case, the general
solution is given in terms of d-dimensional Clifford algebra.
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The organization of this paper is as follows: in section 2, we review the main lines of
Calabi–Yau hypersurfaces using toric geometry methods. Then we develop a method of
getting complex d Calabi–Yau mirror coset manifolds Ck+1/C∗r , k − r = d, as hypersurfaces
in WP d+1, by solving the yi invariants of mirror geometry in terms of invariants of the C∗

action of the weighted projective space and the toric geometry data of Ck+1/C∗r . In section 3,
we explore the general form of discrete symmetries of the mirror hypersurface using their toric
geometry data. Then we discuss orbifolds of toric Calabi–Yau hypersurfaces. In section 4, we
build the corresponding NC toric Calabi–Yau algebras using the algebraic geometry approach
of [37, 38]. Then we work out explicitly the matrix realizations of these algebras using toric
geometry ideas. In section 5, we give the link with the BL construction while in section 6 we
give the generalization of the NC T 2 × T 2 × T 2

Z2 × Z2
orbifold to (T 2)⊗(2k+1)

Z2k
2

, k � 1, where (T 2)⊗(2k+1)

is realized by (2k + 1) elliptic curves embedded in C(4k+2) complex space. Our construction,
which generalizes that of [38] given by k = 1, involves non-commuting operators satisfying
the 2k-dimensional Clifford algebra. We end this paper by giving our conclusion.

2. Toric geometry of CY manifolds

2.1. Toric realization of CY manifolds

The simplest (d + 1) complex dimensional toric manifold, which we denote as Md+1
� , is given

by the usual complex projective space P d+1 = {Cd+2 − 0d+2}/C∗ [54–56]. One can also build
Md+1

� varieties by considering the (k + 1)-dimensional complex spaces Ck+1, parametrized by
the complex coordinates {x = (x1, x2, x3, . . . , xk+1)}, and r toric actions Ta acting on the xi as

Ta : xi → xi

(
λ

qa
i

a

)
. (2.1)

Here the λa are r non-zero complex parameters and qa
i are integers defining the weights of the

toric actions Ta . Under these actions, the xi form a set of homogeneous coordinates defining a
(d +1) complex dimensional coset manifold Md+1 = (Ck+1)/C∗r with dimension d = (k−r).

More generally, toric manifolds may be thought of as the coset space (Ck+1 − P)/C∗r

with P a given subset of Ck+1 defined by the C∗r action and a chosen triangulation. P
generalizes the standard {0k+1 = (0, 0, 0, . . . , 0)} singlet subset that is removed in the case
of P k . One of the beautiful features of toric manifolds is their nice geometric realization
known as the toric geometry representation. The toric data of this realization are encoded
in a polyhedron � generated by (k + 1) vertices carrying all geometric informations on the
manifold. These data are stable under C∗r actions and are useful in the geometric engineering
method of 4DN = 2 supersymmetric quantum field theory, in particular, in the building of
the basic (d + 1) gauge invariant coordinate system {uI } of the (Ck+1 −P)/C∗r coset manifold
in terms of the homogeneous coordinates xi [49–52, 54].

In toric geometry, (d+1) complex manifolds Md+1
� are generally represented by an integral

polytope � spanned by (k + 1) vertices Vi of the standard lattice Zd+1. These vertices fulfil r

relations given by

k+1∑
i=1

qa
i Vi = 0, a = 1, . . . , r, (2.2)

and are in one-to-one correspondence with the r actions of C∗r on the complex coordinates xi

(equation (2.1)). In the above relation, the qa
i integers are the same as in equation (2.1) and are

interpreted, in the N = 2 gauged linear sigma model language, as the U(1)r gauge charges of
the xi complex field variables of two-dimensional N = 2 chiral multiplets [55–61]. They are
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also known as the entries of the Mori vectors describing the intersections of complex curves
Ca and divisors Di of Md+1

� [62–64].
Submanifolds N of Md+1

� may also be studied by using the � toric data
{
qa

i , Vi

}
of the

original manifold. An interesting example of Md+1
� subvarieties is given by the d complex

dimensional Calabi–Yau manifolds Hd
� defined as hypersurfaces in Md+1

� as follows [52]:

p(x1, x2, x3, . . . , xk+1) =
∑

I

bI

k+1∏
i=1

x
〈Vi ,V

∗
I 〉

i = 0, (2.3)

together with the Calabi–Yau condition

k+1∑
i=1

qa
i = 0, a = 1, . . . , r. (2.4)

The V ∗
I appearing in relation (2.3) are vertices in the dual polytope �∗ of �; their scalar

product with the Vi is positive, 〈Vi, V
∗
I 〉 � 0. For convenience, we will set from now on

〈Vi, V
∗
I 〉 = nI

i . The bI coefficients are complex moduli describing the complex structure of
Hd

�; their number is given by the Hodge number h(d−1,1)
(
Hd

�
)
. Using the nI

i integers, the
d-dimensional hypersurfaces Hd

� in Md+1
� (equation (2.3)) read

∑
I

bI

k+1∏
i=1

x
nI

i

i = 0. (2.5)

At this stage it is interesting to make some remarks regarding the above relation. At first sight,
one is tempted to make a correspondence between this relation and the hypersurface equation
used in [38] and take it as the starting point to build NC Calabi–Yau manifolds à la Berenstein
et al. However, this is not so obvious; first because the polynomial (2.5) is not a homogeneous
one and second even though one wants to try to bring it to a homogeneous form, one has to
specify the toric data

{
q∗A

I ;V ∗
I

}
of the polyhedron �∗, mirror to

{
qa

i ;Vi

}
data of �. The

mirror data satisfy similar relations as (2.2) and (2.4), namely

k∗+1∑
I=1

q∗A
I = 0, A = 1, . . . , r∗,

k∗+1∑
I=1

q∗A
I V ∗

I = 0, A = 1, . . . , r∗, (2.6)

together with k + 1 − r = k∗ + 1 − r∗ = d. Moreover, setting YI = ∏k+1
i=1 x

nI
i

i , the above
polynomial becomes a linear combination of the YI gauge invariants as

∑
I bI YI = 0.

This relation can however be rewritten in terms of the (d + 1)-dimensional generator basis
{Yα; 1 � α � (d + 1)} as follows,

1 +
d+1∑
α=1

bαYα +
k∗+1∑

I=d+2

bIYI = 0, (2.7)

where the remaining YI invariants, that is the set {YI ; (d + 2) � I � (k∗ + 1)}, are determined
by solving the following Calabi–Yau constraint equations:

k∗+1∏
I=1

Y
q∗A

I

I = 1; A = 1, . . . , r∗. (2.8)

To realize relation (2.7) as a homogeneous polynomial describing the hypersurfaces Hd
� with

the desired properties, in particular the Calab–Yau condition, one has to solve the above



NC Calabi–Yau orbifolds in toric varieties with discrete torsion 725

constraint equations. Though this derivation can a priori be done using (2.8), we will not
proceed in that way. What we will do instead is to use the so-called mirror Calabi–Yau
manifolds Hd∗

� and derive their homogeneous description. The point is that the mirror
geometry has some specific features and constraint equations that involve directly the toric
data

{
qa

i ;Vi

}
of the � polyhedron contrary to the original hypersurfaces Hd

� which involve
the

{
q∗A

I ;V ∗
I

}
data of �∗. Once the rules of getting the Hd∗

� homogeneous hypersurfaces are
defined, one can also reconsider the analysis of Hd

� by starting from relations (2.7) and (2.8),
use the �∗ toric data and perform similar analysis to that we will be developing below.

Under mirror symmetry, toric manifolds M
(d+1)
� and Calabi–Yau hypersurfaces Hd

� are

mapped to M
(d+1)∗
� and Hd∗

� respectively. They are obtained by exchanging the roles of
complex and Kahler structures in agreement with the Hodge relations

h(d−1,1)
(
Hd

�
) = h(1,1)

(
Hd∗

�
)
, h(1,1)

(
Hd

�
) = h(d−1,1)

(
Hd∗

�
)
, (2.9)

and similarly for M
(d+1)
� and M

(d+1)∗
� [63–66]. In practice, the building of M

(d+1)∗
� and so Hd∗

�
is achieved by using the vertices V ∗

I of the convex hull spanned by the V ∗
α . Following [65–71],

mirror Calabi–Yau manifolds Hd∗
� are given by the zero of the polynomial

p(z1, z2, . . . , zk∗+1) =
k+1∑
i=1

ai

k∗+1∏
I=1

(
z
nI

i

I

)
, (2.10)

where the zI are the mirror coordinates. The C∗r∗
actions of M

(d+1)∗
� act on the zI as

zI → zIλ
q∗A

I

I , (2.11)

with q∗A
I as in equation (2.6). The ai are the complex structure of the mirror Calabi–Yau

manifold Hd∗
� ; they also describe the Kahler deformations of Hd

�. An interesting feature of

relation (2.10) is its representation in terms of the (k + 1) invariants yi = ∏k∗+1
I=1

(
z
mI

i

I

)
under

the C∗r∗
actions of Md∗

� , i.e.

k+1∑
i=1

aiyi = 0, (2.12)

together with the following r constraint equations of the mirror geometry:

k+1∏
i=1

(
y

qa
i

i

) = 1, a = 1, . . . , r. (2.13)

These equations involve (k + 1) variables yi ; not all of them are independent since they are
subject to (r + 1) conditions (r from equations (2.13) and one from (2.12)) leading indeed to
the right dimension of Hd∗

� . Equations (2.12) and (2.13) will be our starting point towards
building NC Calabi–Yau manifolds using the Berenstein et al approach. Before that let us put
these relations into a more convenient form.

2.2. Solving the mirror constraint equations

As shown in the above equations, not all the yi are independent variables, only (d + 1) of
them are. In what follows we shall fix this redundancy by using a coordinate patch of the
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(d + 1) weighted projective spaces WP d+1 parametrized by the system of variables {uα, 1 �
α � (d + 1); ud+2}. In the coordinate patch ud+2 = 1, the uα variables behave as (d + 1)

independent gauge invariants parametrizing the coset manifold [(Cd+2)/C∗] ∼ [(Ck+1)/C∗r ].
The remaining r yi are given by monomials of the uα . A nice way of getting the relation
between yi and uα is inspired from the analysis [52, 53]; it is based on introducing the
following system {Ni; 1 � i � (k + 1)} of (d + 1)-dimensional vectors of integer entries
(Ni)α = 〈Vi, V

∗
α 〉 ≡ nα

i . From equation (2.2), it is not difficult to see that

k+1∑
i=1

qa
i Ni = 0, a = 1, . . . , r; α = 1, . . . , d + 1, (2.14)

or equivalently

k+1∑
i=1

qa
i nα

i = 0, a = 1, . . . , r; α = 1, . . . , d + 1. (2.15)

Note that the introduction of the system
{
(Ni)α ≡ nα

i ; 1 � i � (k + 1)
}

has a remarkable
interpretation; it describes the complex deformations of Hd∗

� and by the correspondence
(2.9) the Kahler ones of Hd

�. Observe also that shifting the Ni by a constant vector, say t0,
equation (2.14) remains invariant due to the Calabi–Yau condition (2.4). Therefore the Vi

vertices of equations (2.2) can be solved by a linear combination of Ni and t0;Vi = Ni + at0.
Having these relations in mind, we can use them to reparametrize the yi invariants in terms of
the (d + 2) generators uµ(ud+2 arbitrary) as follows:

yi = u
(n1

i −1)

1 u
(n2

i −1)

2 · · · u(nd+1
i −1)

d+1 u
(nd+2

i −1)

d+2 =
d+2∏
µ=1

u
(n

µ

i −1)
α , (2.16)

y0 = 1 ⇔ (
nα

0 − 1
) = 0, ∀ α = 1, . . . , d + 2. (2.17)

Note that
∏k+1

i=1

(
y

qa
i

i

) = 1 is automatically satisfied due to equations (2.14) and (2.15). Note
also the nd+2

i integers are extra quantities introduced for later use; they should not be confused
with the

{
nα

i ; 1 � α � d + 1
}

entries of Ni . Putting relations (2.16) and (2.17) back into
equation (2.12), we get an equivalent way of writing equation (2.10), namely

a01 +
k+1∑
i=1

aiu
(n1

i −1)

1 u
(n2

i −1)

2 · · · u(nd+1
i −1)

d+1 u
(nd+2

i −1)

d+2 = 0. (2.18)

The main difference between this relation and equation (2.10) is that the above one involves
(d + 2) variables only, in contrast to the case of equation (2.10) which rather involves
(d + r∗ + 1) coordinates; that is r∗ variables more. Equation (2.18) is then a relation where
the C∗r∗

symmetries on the zI equation (2.11) are completely fixed. Indeed starting from
equation (2.10), it is not difficult to rederive equation (2.18) by working in the remarkable
coordinate patch U = {(z1, z2, . . . , zd+2,1, 1, . . . , 1)}, which is isomorphic to a weighted
projective space WP d+1

(δ1,...,δd+2)
with a weight vector δµ = (δ1, . . . , δd+2). In this way of

viewing things, the yi variables may be thought of as gauge invariants under the projective
action WP d+1

(δ1,...,δd+2)
and consequently the Calabi–Yau manifold (2.18) as a hypersurface

in WP d+1
(δ1,...,δd+2)

described by a homogeneous polynomial p(u1, . . . , ud+2) embedded of

degree D = ∑d+2
µ=1 δµ. Thus, under the projective action uµ −→ λδµuµ, the monomials

yi = ∏d+2
µ=1

(
u

(n
µ

i −1)
µ

)
transform as yiλ

∑
µ(δµ(n

µ

i −1)) and so the following constraint equations
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should hold:

d+2∑
µ=1

δµ = D, (2.19)

d+2∑
µ=1

δµn
µ

i = D. (2.20)

These relations show that the n
µ

i integers can be solved in terms of the partitions d
µ

i of the
degree D of the homogeneous polynomial p(u1, . . . , ud+2). Indeed from

∑d+2
µ=1 d

µ

i = D, one

sees that n
µ

i = d
µ

i

δµ
, among which we have the following remarkable ones:

n
µ

i = D

δµ

if i = µ for 1 � µ � d + 2. (2.21)

To get the Vi vertices, we keep the
{
nα

i ; 1 � α � d + 1
}

entries and subtract the trivial
monomial associated with

{(
tα0

) = (1, 1, . . . , 1)
}
. So the Vi vertices are

V α
i = nα

i − tα0 = dα
i

δα

− tα0 . (2.22)

For the (d + 3) leading vertices, we have

V0 = (0, 0, 0, . . . , 0, 0)

V1 =
(

D

δ1
− 1,−1,−1, . . . ,−1,−1

)
,

V2 =
(

−1,
D

δ2
− 1,−1, . . . ,−1,−1

)

V3 =
(

−1,−1,
D

δ3
− 1, . . . ,−1,−1

)
...

Vd+1 =
(

−1,−1,−1, . . . ,
D

δd+1
− 1,−1

)
,

Vd+2 =
(

−1,−1,−1, . . . ,−1,
D

δd+2
− 1

)
.

(2.23)

Before going ahead, let us give some remarks: (a) the integrality of the entries of these vertices
requires that the D degree should be a common multiple of the weights δµ. Moreover, the
number of partitions of D should be less than (k + 2). (b) As far as the (d + 3) leading vertices
are concerned, the corresponding homogeneous monomials are

N0 →
d+2∏
µ=1

uµ, (2.24)

Nµ −→ u
D
δµ

µ , µ = 1, . . . , d + 2. (2.25)

So the corresponding mirror polynomial takes the form
d+2∑
µ=1

u
D
δµ

µ + a0

d+2∏
µ=1

(uµ) = 0. (2.26)



728 A Belhaj and E H Saidi

More generally, the mirror polynomial P�(u) describing Hd∗
� reads

P�(u) =
d+2∑
µ=1

u
D
δµ

µ + a0

d+2∏
µ=1

(uµ) +
k+1∑

i=d+3

ai

d+2∏
µ=1

(
u

ni
µ

µ

) = 0, (2.27)

where the ai are complex moduli of the mirror Calabi–Yau hypersurface.

2.3. More on the mirror CY geometry

Here we further explore the relations between the realizations (2.10) and (2.27) of the mirror
Calabi–Yau manifolds. In particular, we give an explicit derivation of the weights δµ involved
in the polynomials (2.27) in terms of the Calabi–Yau qa

i charges. To do so, first of all recall
that under the projective action

uµ −→ λδµuµ, (2.28)

the polynomial P�(u) behaves as P�(λδµu) = λDP�(u) leaving the zero locus invariant.
Using the identity

∑d+2
µ=1 δµ = D, one may reinterpret the Calabi–Yau condition (2.4) or

equivalently by introducing r integers pa

d+2∑
µ=1

r∑
a=1

paq
a
µ = −

k+1∑
i=d+3

r∑
a=1

paq
a
i ,

by thinking about it as

δµ =
r∑

a=1

paq
a
µ (2.29)

D =
k+1∑

i=d+3

δi = −
k+1∑

i=d+3

r∑
a=1

paq
a
i . (2.30)

For instance, for ordinary projective spaces P k , we can use the generalization of the
transformation introduced in [38], namely

uµ −→ ωQa
µuµ, ud+2 −→ ud+2, (2.31)

where, roughly speaking, ω is a Dth root of unity. This transformation leaves P�(u) invariant
as far as the Qa

µ obey the Calabi–Yau condition
∑d+1

µ=1 Qa
µ = 0 and Qa

d+2 = 0, in agreement
with the choice of the coordinate patch ud+2 = 1. Next by appropriate choice of λ, we can
compare both the transformations (2.28) and (2.31) as well as their actions on the monomials

yi = ∏d+2
µ=1

(
u

(n
µ

i −1)
µ

)
respectively given by yi −→ yiω

∑
µδµ(n

µ

i −1) and yi −→ yiω
∑

µQa
µ(n

µ

i −1).
Invariance under these actions leads to equations (2.19) and (2.20), and their toric geometry
equations analogue

d+2∑
µ=1

Qa
µ = 0 modulo (D) (2.32)

d+2∑
µ=1

Qa
µn

µ

i = 0 modulo (D). (2.33)



NC Calabi–Yau orbifolds in toric varieties with discrete torsion 729

Comparing these equations with equations (2.32)–(2.33) and (2.19)–(2.20), one gets the
following relation between the Qa

µ and qa
i charges of the original manifold:

Qa
µ =

(
qa

µ +
1

d + 2

k∑
i=d+3

qa
i

)
modulo (D). (2.34)

As the isometries of equations (2.26) and (2.27) will be involved in the study of the NC
hypersurface Calabi–Yau orbifolds, let us derive a general form of these isometries using
geometry toric data. We will distinguish between two cases: (i) the group of isometries
�0 leaving equation (2.26) invariant and (ii) its subgroup �cd of discrete symmetries of
equation (2.27) commuting with complex deformations.

3. Discrete symmetries and CY orbifolds

To determine the discrete symmetries of the Calabi–Yau homogeneous hypersurfaces, let us
derive the general groups �0 and �cd of transformations leaving equations (2.26) and (2.27)
invariant:

� = {gω | gW : uµ → gω(uµ) = u′
µ = uµ(W)bµ;P�(u′) = P�(u)}, (3.1)

where

Wbµ =
d+2∏
ν=1

[
(ων)

aν
µ

]
and where {bµ}1�µ�d+2 is a (d + 2)-dimensional vector weight and aν

µ are their entries. They
will be determined by symmetry requirements and the Calabi–Yau toric geometry data. As
the solutions we will build depend on the weights δµ, we will distinguish hereafter the P d+1

and WP d+1 spaces, a matter of illustrating the idea and the techniques we will be using.

3.1. P d+1 projective spaces

The crucial point to note here is that because of the equality δ1 = δ2 = · · · = δd+2 = 1, the D
degree of the polynomials P�(u) is equal to (d + 2) and so the constraint equation (2.20) reduces
to

∑d+2
µ=1 n

µ

i = (d + 2) for any value of the i index. Putting back δµ = 1 in equations (2.26),
one sees that invariance under �0 of the first terms ud+2

µ shows that a natural solution is given
by taking ω1 = ω2 = · · · = ωd+1 = ω = exp i

(
2π
d+2

)
and then ωbµ = exp i 2π

d+2 bµ. However,

invariance of the term
∏d+2

µ=1(uµ) under the change (3.1), implies that bµ should satisfy the
following constraint equation:

d+2∑
µ=1

bµ = 0, modulo (d + 2). (3.2)

In what follows, we shall give an explicit class of special solutions for the constraint equation∑d+2
µ=1bµ = 0, by using the toric geometry data of the Hd

� Calabi–Yau manifold equations (2.2)
and (2.4). The solutions, modulo (d + 2), are obtained by making appropriate shifts.

3.1.1. Explicit construction of bµ weights. The solution for bµ we will construct below
contains two terms which are intimately linked to toric geometry equations (2.2) and (2.4). To
have an idea of the explicit derivation of the bµ, let us first introduce the following two Qµ

and ξµ quantities. They will be used in realizing bµ.
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The Qµ weights. This is a quantity defined as

Qµ = Qµ(p1, . . . , pr) =
r∑

a=1

paQ
a
µ, 1 � µ � d + 2, (3.3)

where the pa are given integers and Qa
µ are a kind of shifted Calabi–Yau charges, which they

are given in terms of the qa
µ Mori vectors of the toric manifold shifted by constant numbers

τ a , as shown in the following relation:

Qa
µ = qa

µ + τ a. (3.4)

The τ a are determined by requiring that the Qa
µ shifted charges have to satisfy the Calabi–Yau

condition
∑d+2

µ=1Q
a
µ = 0. Using (2.4), we find

τ a = 1

d + 2

k+1∑
i=d+3

qa
i . (3.5)

Replacing Qa
µ by its explicit expression in terms of the Mori vector charges, we get

Qµ =
r∑

a=1

pa

(
qa

µ +
1

d + 2

k∑
i=d+3

qa
i

)
. (3.6)

It satisfies identically the property
∑d+2

µ=1Qµ = 0, which we will interpret as the Calabi–Yau

condition because of its link with the original relation
∑k+1

i=1 qa
i = 0.

The ξµ weights. These weights carry information on the data of the polytope � of the toric
varieties and so on their Calabi–Yau submanifolds. They are defined as

ξµ = ξµ(s1, . . . , sd+1) =
d+1∑
α=1

sαξα
µ (3.7)

where the sα are integers and ξα
µ are defined in terms of the toric data of Md+1

� as follows:

ξα
µ =

r∑
a=1

pa

(
qa

µnα
µ +

1

d + 2

k+1∑
i=d+3

qa
i nα

i

)
. (3.8)

As for the Qµ weights, one can check here also that the sum
∑d+2

µ=1 ξµ vanishes identically
due to the constraint equation (2.15).

The bµ weights. A class of solutions for bµ based on the Calabi–Yau toric geometry data (2.2)
and (2.4) may be given by a linear combination of the Qµ and ξµ weights as shown below:

bµ = m1Qµ + m2ξµ, (3.9)

where m1 and m2 are integers modulo (d + 2). Moreover, setting bµ = ∑d+2
ν=1 aν

µ and

Qα
µ = Qa

µ for α = 1, . . . , r;
Qα

µ = 0 for α = (r + 1), . . . , (d + 2),
(3.10)

while Qα
µ = Qa

µ for r � d + 1, we can rewrite the above solutions as follows:

aν
µ = m1Q

ν
µ + m2ξ

ν
µ. (3.11)

Therefore, the general transformations of the �0(P
d+1) group of discrete isometries are given

by the change (3.1) with bµ vector weights depending on (r + d + 1) = k integers, namely r
integers pa and (d + 1) integers sα .
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3.1.2. Complex deformations. To get the discrete symmetries of the full Calabi–Yau
homogeneous complex hypersurface including the complex deformation equation (2.27), one
should solve more complicated constraint relations which we give hereafter. Under �cd of
transformation equation (2.27), the complex deformations of the Calabi–Yau manifold P�(u)

are stable provided the bµ weights satisfy equation (3.2) but also the following constraint
equations:

d+2∑
µ=1

bµnν
µ = 0, (3.12)

where the nν
µ are as in equation (2.27). A particular solution of these constraint equations is

given by taking bµ = Qµ that is m1 = 1 and m2 = 0. Indeed replacing bµ by its expression
(3.9) and putting back into the above relation, we get with the help of the identity (2.20),
 d+2∑

µ=1

r∑
a=1

pa

(
qa

µ + τ a
)
nν

µ


 =

r∑
a=1

pa


 d+2∑

µ=1

qa
µnν

µ + (d + 2)τ a




=
r∑

a=1

pa


 d+2∑

µ=1

qa
µnν

µ +
k∑

i=d+3

qa
i nν

µ


 = 0. (3.13)

For m1,m2 = 0, the relation bµ = m1Qµ + m2ξµ ceases to be a solution of the constraint
equation (3.12). Therefore �cd is a subgroup of �0. It depends on the pa integers and involves
the Calabi–Yau condition only.

3.2. WP d+1 weighted projective spaces

The previous analysis made for the case of P d+1 applies as well for WP d+1. Starting from
equation (2.26) and making the change (3.1), invariance requirement leads to take the ωµ

group parameters as ωµ = exp i 2πδµ

D
and the aν

µ coefficients constrained as

d+2∑
ν=1

δνaν
µ = 0, modulo δµ

d+2∑
µ=1

aν
µ = 0.

(3.14)

Following the same reasoning as before, one can write down a class of solutions, with integer
entries, in terms of the previous weights as follows,

aν
µ = (δν)−1

[
m1Q

ν
µ + m2ξ

ν
µ

]
, (3.15)

where Qν
µ and ξν

µ are as in equation (3.11). In case where the complex deformations of
equation (2.27) are taken into account, the discrete symmetry group is no longer the same
since the constraint equation (3.13) is now replaced by the following one:

d+2∑
µ=1

aν
µni

µ = 0, ∀ν = 1, . . . , (d + 2). (3.16)

As in the projective case where the δµ are equal to 1, the solutions for the aν
µ integers are given

by equation (3.15) with m1 = 0 and m2 = 0. To conclude this section, one should note that
the group of discrete isometries �cd ⊂ �0 of the Calabi–Yau hypersurfaces including complex
deformations is intimately related to the Calabi–Yau condition.
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4. NC toric CY manifolds

Before revealing our results regarding NC toric Calabi–Yau’s, let us begin this section by
reviewing briefly the BL idea of building NC orbifolds of Calabi–Yau hypersurface.

4.1. Algebraic geometric approach for CY

Roughly speaking, given a d-dimensional Calabi–Yau manifold Xd described algebraically by
a complex equation p(zi) = 0 with a group � of discrete isometries. We take quotient of Xd

by the action of the finite group �

� : zi → gzig
−1, g ∈ � (4.1)

such that the following two conditions are fulfilled: p(zi) polynomial and the (d, 0)

holomorphic form are invariants. The latter condition is the equivalent of the vanishing
of the first Chern class c1 = 0. Using the discrete torsion, one can build the NC extensions
of the orbifold,

(
Xd

�

)
nc, as follows. The coordinates zi are replaced by matrix operators Zi

satisfying

ZiZj = θijZjZi. (4.2)

Invariance of p(zi) requires the parameters θij to be in the discrete group �. Moreover, the
Calabi–Yau condition imposes the extra constraint equation∏

i

θij = 1, ∀j = i. (4.3)

In this case of the quintic, embedded in a P 5 projective space described by the homogeneous
polynomial p(z1, . . . , z5) of degree 5:

p(zi) = z5
1 + z5

2 + z5
3 + z5

4 + z5
5 + a0

5∏
1=1

zi = 0. (4.4)

The group � acts as zi −→ ziω
Qa

i where ω5 = 1 and the Qa
i vectors are

Q1
i = (1,−1, 0, 0, 0), Q2

i = (1, 0,−1, 0, 0), Q3
i = (1, 0, 0,−1, 0) (4.5)

In the coordinate patch U = {(z1, z2, z3, z4); z5 = 1}, equation (4.5) reduces to

1 + z5
1 + z5

2 + z5
3 + z5

4 + a0

4∏
j=1

zj = 0. (4.6)

The local NC algebraAnc describing the NC version of equation (4.5) is obtained by associating
with z5 the matrix z5I5 and with each holomorphic variable zi a 5 × 5 matrix Zi satisfying the
BL algebra

Z1Z2 = αZ2Z1, Z1Z3 = α−1βZ3Z1,

Z1Z4 = β−1Z4Z1, Z2Z3 = αγZ3Z2,

Z2Z4 = γ −1Z4Z2, Z3Z4 = βγZ4Z3,

(4.7)

where α, β and γ are fifth roots of unity. The centre of this algebra Z(Anc) = {
I5, Z

5
ν ,∏4

ν=1 Zν

}
, that is,

[
Zµ,Z5

ν

] = 0,

[
Zµ,

4∏
ν=1

Zν

]
= 0. (4.8)

According to the Schur lemma, one can set Z5
ν = I5z

5
ν and

∏4
ν=1Zν = I5

∏4
ν=1zν and so

the centre coincides with the equation of the quintic. In what follows we extend this analysis
to NC toric Calabi–Yau orbifolds.
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4.2. NC toric CY orbifolds

Following the same lines as [37–41] and using the discrete symmetry group �, one can build
the orbifoldsO = Hd∗

�
/
� of the Calabi–Yau hypersurface and work out their non-commutative

extensions Onc. The main steps in the building of Onc may be summarized as follows: first start
from the Calabi–Yau hypersurfaces Hd∗

� (equations (2.26)–(2.27)) and fix a coordinate patch
of WP d+1, say ud+2 = 1. Then impose the identification under the discrete automorphisms
(3.1) defining Hd∗

�
/
�. The NC extension of this orbifold is obtained as usual by extending the

commutative algebra Ac of functions on Hd∗
�

/
� to a NC one Anc ∼ Onc. In this algebra, the

uµ coordinates are replaced by matrix operators Uµ satisfying the algebraic relations

UµUν = θµνUνUµ, ν > µ = 1, . . . , d + 1, (4.9)

where the θµν non-commutativity parameters obey the following constraint relations:

θµνθνµ = 1, (4.10)

(θµν)
D
δν = 1, (4.11)

d+1∏
µ=1

(θµν) = 1, (4.12)

as far as equation (2.26) is concerned that is in the region of the moduli space where the
complex moduli ai are zero (i = 1, . . .). However, in the general case where the ai are
non-zero we should have moreover

d+1∏
µ=1

(
θ

nα
µ

µν

) = 1, α = 1, . . . , d + 1. (4.13)

Let us comment briefly on these constraint relations. Equation (4.11) reflects that the
parameters θνµ are just the inverse of θµν and can be viewed as describing deformations
away from the identity suggesting by the occasion that they may be realized as

θµν = exp ηµν,

where ηµν = −ηνµ is the infinitesimal version of the non-commutativity parameter. The

constraint (4.12)–(4.13) reflects just the remarkable property according to which U
D
δν
ν and∏d+2

µ=1(Uµ) are elements in the centre Z(Anc) of the non-commutative algebra Anc, i.e.

[
Uµ,U

D
δν
ν

]
= 0, (4.14)

[
Uµ,

d+2∏
ν=1

(Uν)

]
= 0. (4.15)

Finally, the constraint equations (4.14), obtained by requiring
[
Uµ,

∏d+2
ν=1

(
U

nα
µ

ν

)] = 0, describe
the compatibility between non-commutativity and deformations of the complex structure of
the Calabi–Yau hypersurfaces.

In what follows we shall solve the above constraint equations (4.11)–(4.14) in terms of
toric geometry data of the toric variety in which the mirror geometry is embedded. Since these
solutions depend on the weight vector δ we will consider two cases: δµ = 1 for all values of
µ and δµ taking general numbers (equations (2.20)).
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4.2.1. Matrix representations for projective spaces. The analysis we have developed so
far can be made more explicit by computing the NC algebras associated with the Calabi–
Yau hypersurface orbifolds with discrete torsion. In this regard, a simple and instructive
class of solutions of the above constraint equations may be worked in the framework of the
P d+1 ordinary projective spaces. To do this, consider a d complex dimensional Calabi–Yau
homogeneous hypersurfaces in P d+1, namely,

ud+2
1 + ud+2

2 + ud+2
3 + ud+2

4 + · · · + ud+2
d+2 + a0

d+2∏
µ=1

uµ = 0, (4.16)

with the discrete isometries (2.31) and Calabi–Yau charges Qa
µ satisfying

d+2∑
µ=1

Qa
µ = 0, a = 1, . . . , d. (4.17)

From constraint equation (4.12), it is not difficult to see that θµν is an element of the Zd+2

group and so can be written as

θµν = ωLµν , (4.18)

where ω = exp 2π i
d+2 and Lµν is a (d + 1) × (d + 1) antisymmetric matrix, i.e. Lµν = −Lνµ,

as required by equation (4.11). Putting this solution back into equation (4.13), one discovers
that this tensor should satisfy

d+1∑
µ=1

Lµν = 0, modulo (d + 2). (4.19)

Using the toric data of the Calabi–Yau manifold
∑d+1

µ=1Q
a
µ = 0 and

∑d+1
µ=1 ξα

µ = 0, namely

Qµ =
r∑

a=1

pa

(
qa

µ +
1

d + 1

k∑
i=d+2

qa
i

)
, (4.20)

ξα
µ =

r∑
a=1

pa

(
qa

µnα
µ +

1

d + 1

k+1∑
i=d+2

qa
i nα

i

)
, (4.21)

one sees that the Lµν can be solved as bilinear forms of Qa
µ and ξα

µ , namely

Lµν = L1�abQ
a
µQb

ν + L2�αβξα
µξβ

ν . (4.22)

Here L1 and L2 are numbers modulo (d + 2) and �ab and �αβ are respectively the
antisymmetric r ×r and (d + 2)× (d + 2) for even integer values of r and d or their generalized
expressions otherwise. Moreover, Lµν can also be rewritten in terms of the aν

µ components of
bµ. For the particular case L2 = 0, equation (4.23) reduces to

Lµν = −Lνµ = mabQ
[a
µ Qb]

ν , (4.23)

where mab is an antisymmetric d × d matrix of integers modulo (d + 2). It satisfies
d+2∑
µ=1

Lµν = 0. (4.24)

The NC extension of equation (4.17) is given by the following algebra, to which we refer to
as Anc(d + 2):

UµUν = ωµν�νµUνUµ; µ, ν = 1, . . . , (d + 1),

UµUd+2 = Ud+2Uµ; µ = 1, . . . , (d + 1),
(4.25)
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where �µν is the complex conjugate of ωµν . The latter are realized in terms of the Calabi–Yau
charges data as follows:

ωµν = exp i

(
2π

d + 2
mabQ

a
µQb

ν

)
= ωmabQ

a
µQb

ν . (4.26)

Using the property �d+2
µν = 1 and

∏
µ,�µν = 1, one can check that the centre of the algebra

(4.26) is given by

Z(Anc) = λ1U
d+2
1 + λ2U

d+2
2 + · · · + λd+1U

d+2
d+1 + λd+2Id+2 +

d+1∏
µ=1

Uµ. (4.27)

The Schur lemma implies that this matrix equation can be written as

Z(Anc) = p(u1, u2, . . . , ud+1)Id+2. (4.28)

To determine the explicit expression of p(u1, u2, . . . , ud+1), let us discuss in what follows the
matrix irreducible representations of the NC Calabi–Yau algebra for a regular point. In the
next subsection we will give the representation for the fixed points, where the representation
becomes reducible and corresponds to fractional branes.

Finite-dimensional representations of the algebra (4.26) are given by matrix subalgebras
Mat[n(d + 2), C], the algebra of n(d + 2) × n(d + 2) complex matrices, with n = 1, 2, . . . .

Computing the determinant of both sides of equations (4.26)

det(UµUν) = (ωµν�νµ)D det(UνUµ) = det(UνUµ), (4.29)

the dimension D of the representation to be such that

(ωµν�νµ)D = 1. (4.30)

Using the identity (4.19), one discovers that D is a multiple of (d + 2). We consider the
fundamental (d + 2) × (d + 2) matrix representation obtained by introducing the following set{
Q; Pαab

; a, b = 1, . . . , d
}

of matrices:

Pαab
= diag

(
1, αab, α

2
ab, . . . , α

d+1
ab

); Q =




0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
. . . . . . .

. . . . . . .

0 0 0 . 1 0 0
0 0 0 . . 1 0




(4.31)

where αab = wmab satisfying αd+2
ab = 1. From these expressions, it is not difficult to see that

the
{
Q; Pαab

; a, b = 1, . . . , d
}

matrices obey the algebra

PαPβ = Pαβ, Pd+2
α = 1, Qd+2 = 1. (4.32)

Using the identities

Pnµ

αµ
Qmµ = α

nµmµ

µ QmµPnµ

αµ
, (4.33)(

Pnµ

αµ
Qmµ

)(
Pnν

αν
Qmν

) = αnimν

µ α
−mµnν

ν

(
Pnν

αν
Qmν

)(
Pnν

αµ
Qmµ

)
, (4.34)

one can check that the Uµ operators can be realized as

Uµ = uµ

d∏
a,b=1

(
P

Qa
µ

αab
QQµb)

, (4.35)
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where uµ are C-number which should be thought of as in (4.17). From the Calabi–Yau
condition, one can also check that the above representation satisfies

Ud+2
µ = ud+2

µ Id+2,

d+1∏
µ=1

Uµ = Id+2


 d+1∏

µ=1

uµ


 . (4.36)

Putting these relations back into (4.29), one finds that the polynomial p(uµ) is nothing but
equation (4.17) of the Calabi–Yau hypersurface.

4.2.2. Solution for weighted projective spaces. In the case of weighted projective spaces
with a weight vector δ = (δ1, . . . , δd+2), the degree D of the Calabi–Yau polynomials and
the corresponding Ni vertices are respectively given by equations (2.19)–(2.20) and (2.24)–
(2.25). Note that integrality of the vertex entries requires that D should be the smallest
common multiple of the weights δµ; that is D

δµ
an integer. Following the same reasoning as

for the case of the projective space, one can work out a class of solutions of the constraint
equations (4.11)–(4.13) in terms of powers of ωµ. We get the result

θµν = exp i2π

[
(δν)Lµν

D

]
, (4.37)

where Lµν is as in equation (4.23). Instead of being general, let us consider a concrete example
dealing with the analogue of the quintic in the weighted projective space WP 4

{δ1,δ2,δ3,δ4,δ5}. In

this case the Calabi–Yau hypersurface
∑5

µ=1 u
D
δµ

µ + a0
∏5

µ=1(uµ) = 0, which for the example
δ1 = 2 and δ2 = δ3 = δ4 = δ5 = 1 reduces to

u3
1 + u6

2 + u6
3 + u6

4 + u6
5 + a0

5∏
µ=1

(uµ) = 0. (4.38)

This polynomial has discrete isometries acting on the homogeneous coordinates uµ as

uµ → uµζ
aν

µ

µ µ = 1, . . . , 5, (4.39)

with ζ 3
1 = 1 while ζ 6

µ = ω6 = 1, i.e. ζ1 = ω2, and ζµ = ω, and where the aν
µ are consistent

with the Calabi–Yau condition. In the coordinate patch {uµ}1�4 with u5 = 1, the equations
defining the NC geometry of the Calabi–Yau (4.39) with discrete torsion, upon using the
correspondence u → U , are given by the algebra (5.1) where the θµν parameters should obey
now the following constraint equations:

θ3
µ1 = 1, µ = 2, 3, 4,

θ6
µν = 1, ν = 1, µ,

4∏
µ=1

θνµ = 1, ∀ν

θµνθνµ = 1, ∀µ, ν.

(4.40)

Setting θµν as θµν = ωLµν the constraints on Lµν read

Lµν = −Lνµ integers modulo 6, Lµ1 = even modulo 6. (4.41)
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Particular solutions of this geometry may be obtained by using antisymmetric bilinears of
aν

µ. Straightforward calculations show that, for pµ = 1, Lµν is given by the following 4 × 4
matrix:

Lµν =




0 k1 − k3 −k1 + k2 k3 − k2

−k1 + k3 0 k1 −k3

k1 − k2 −k1 0 k2

−k3 + k2 k3 −k2 0


 (4.42)

where the kµ integers are such that kµ − kν ≡ 2rµν ∈ 2Z.
The NC algebra associated with equation (4.39) reads, in terms of ωµ = ωkµ and

�µ = ω−kµ ,

U1U2 = ω1�3U2U1, U1U3 = �1ω2U3U1,

U1U4 = ω3�2U4U1, U2U3 = ω1U3U2,

U2U4 = �3U4U2, U3U4 = ω2U4U3.

(4.43)

Furthermore taking α = ω1�3, β = ω2�3 and γ = ω3, one discovers an extension of the BL
NC algebra (4.4); the difference is that now the deformation parameters are such that

α3 = β3 = γ 6 = 1. (4.44)

4.2.3. Fractional branes. Here we study the fractional branes corresponding to reducible
representations at singular points. To illustrate the idea, we give a concrete example concerning
the mirror geometry in terms of the Pd+1 projective space. First note that the Anc(d + 2) (4.37)
corresponds to regular points of NC Calabi–Yau. This solution is irreducible and the branes
do not fractionate. A similar solutions may be worked out as well for fixed points where we
have fractional branes. We focus our attention on the orbifold of the eight-tic, namely,

u8
1 + u8

2 + · · · + u8
8 + a0

8∏
µ=1

uµ = 0, (4.45)

with the discrete isometries Z6
8 and Calabi–Yau charges Qa

µ

Q1
µ = (1,−1, 0, 0, 0, 0, 0, 0), Q2

µ = (1, 0,−1, 0, 0, 0, 0, 0)

Q3
µ = (1, 0, 0,−1, 0, 0, 0, 0), Q4

µ = (1, 0, 0, 0,−1, 0, 0, 0)

Q5
µ = (1, 0, 0, 0, 0,−1, 0, 0), Q6

µ = (1, 0, 0, 0, 0, 0,−1, 0).

(4.46)

The corresponding NC algebra is deduced from the general one given in (4.26). At
regular points, the matrix theory representation of this algebra is irreducible as shown in
equations (4.37). However, the situation is more subtle at fixed points where representations
are reducible. One way to deal with the singularity of the orbifold with respect to Z6

8 is to
interpret the algebra as describing a Z3

8 orbifold with Z3
8 discrete torsions having singularities

in codimension 4. Starting from equations (4.26) and choosing matrix coordinates U5, U6 and
U7 in the centre of the algebra by setting

(ωµν�νµ) = 1, for µ = 5, 6, 7, 8; ∀ν = 1, . . . , 8, (4.47)

the algebra reduces to

U1U2 = α1α2U2U1, U1U3 = α−1
1 α3U3U1

U1U4 = α−1
2 α−1

3 U4U1, U2U3 = α1U3U2

U2U4 = α2U4U2, U3U4 = α3U4U3

(4.48)
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and all remaining other relations are commuting. In these equations, the αµ are such that
α8

µ = 1; these are the phases Z3
8. At the singularity where the u1, u2, u3 and u4 moduli of

equation (4.37) go to zero, one ends with the familiar result for orbifolds with discrete torsion.
Therefore the D-branes fractionate in the codimension 4 singularities of the eight-tic geometry.

5. Link with the BL construction

In this section we want to rederive the results of [38] concerning NC quintic using the analysis
developed in sections 3 and 4. Recall that in the coordinate patch {uµ}1�4 and u5 = 1,
the defining equations of NC geometry of the quintic with discrete torsion, upon using the
correspondence u → U , are given by the following operators algebra:

UµUν = θµνUνUµ, ν > µ = 1, . . . , 4, (5.1)

where the θµν are non-zero complex parameters. As the monomials U 5
µ and

∏5
µ=1(Uµ) are

commuting with all the Uµ, we also have

[
Uν,U

5
µ

] = 0,


Uν,

4∏
µ=1

Uµ


 = 0. (5.2)

Compatibility between equations (5.1) and (5.2) gives constraint relations on θµν , namely

θ5
νµ = 1, (5.3)

4∏
µ=1

θνµ = 1, ∀ν (5.4)

θµνθνµ = 1; θµ5 = 1, ∀µ, ν. (5.5)

To establish the link between our way of doing and the construction of [40], it is interesting to
note that the analysis of [40] corresponds in fact to a special representation of the formalism
we developed so far. The idea is summarized as follows: first start from equation (3.1), which
reads for the quintic as

uµ → uµωbµ, (5.6)

where the bµ weights, bµ = ∑5
ν=1 aν

µ, µ = 1, . . . , 5, are such that

5∑
ν=1

bµ = 0. (5.7)

This relation, interpreted as the Calabi–Yau condition, can be solved in different ways.
A way to do this is to set the bµ weights as

bµ = (p1 + p2 + p3,−p1,−p2,−p3, 0), (5.8)

or equivalently by taking the weight components bν
µ as

aν
µ =




p1 p2 p3 0 0
−p1 0 0 0 0

0 −p2 0 0 0
0 0 −p3 0 0
0 0 0 0 0


 , (5.9)
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where pa are integers modulo 5. More general solutions can be read from equations (4.23) by
following the same method. The next step is to take θµν = exp i

(
2π
5 Lµν

)
with Lµν as follows:

Lµν = m12
(
a1

µa2
ν − a1

νa2
µ

) − m23
(
a2

µa3
ν − a2

νa3
µ

)
+ m13

(
a1

µa3
ν − a1

νa3
µ

)
, (5.10)

where m12 = k1,m23 = k2 and m13 = k3 are integers modulo 5. For pµ = 1, we get

Lµν =




0 k1 − k3 −k1 + k2 k3 − k2

−k1 + k3 0 k1 −k3

k1 − k2 −k1 0 k2

−k3 + k2 k3 −k2 0


 , (5.11)

and so the NC quintic algebra reads

U1U2 = ωk1−k3U2U1, U1U3 = ω−k1+k2U3U1,

U1U4 = ωk3−k2U4U1, U2U3 = ωk1U3U2,

U2U4 = ω−k3U4U2, U3U4 = ωk2U4U3.

(5.12)

Setting ωµ = ωkµ and �µ = ω−kµ , the above relations become

U1U2 = ω1�3U2U1, U1U3 = �1ω2U3U1,

U1U4 = ω3�2U4U1, U2U3 = ω1U3U2,

U2U4 = �3U4U2, U3U4 = ω2U4U3.

(5.13)

Now taking α = ω1�3, β = ω2�3 and γ = ω3, one discovers exactly the BL algebra
equations (4.8).

5.1. More on the NC quintic

As we mentioned, the solution given by equations (5.8) and (5.9) is in fact a special realization
of the BL algebra (4.8). One can also write down other representations of the NC quintic; one
of them is based on taking aν

µ as

aν
µ =




p1 0 p3 0 0
−2p1 p2 0 0 0
p1 −2p2 p3 0 0
0 p2 −2p3 0 0
0 0 0 0 0


 . (5.14)

The corresponding bµ weight vector is then

bµ = (p1 + p3,−2p1 + p2, p1 − 2p2 + p3, p2 − 2p3; 0), (5.15)

with pa are integers modulo 5. As one sees this is a different solution from that given in
equations (5.8) and (5.9) as the corresponding � group of isometries acts differently on the uµ

variables leading then to a different orbifold with discrete torsion. Note that setting pµ = 1,
the aν

µ weights are nothing but the Mori vectors of the blow up of the Â2 affine singularity
of K3, used in the geometric engineering method of 4D N = 2 superconformal theories
embedded in type II superstrings.

Setting pµ = 1 and using equations (5.10) and (5.14), the anti-symmetric Lµν matrix
reads

Lµν =




0 k1 + k2 + 2k3 −2k1 − 2k2 k1 + k2 − 2k3

−k1 − k2 − 2k3 0 3k1 − k2 − 2k3 −2k1 + 2k2 + 4k3

2k1 + 2k2 −3k1 + k2 + 2k3 0 k1 − 3k2 − 2k3

−k1 − k2 + 2k3 2k1 − 2k2 − 4k3 −k1 + 3k2 + 2k3 0


 (5.16)



740 A Belhaj and E H Saidi

where the k1, k2 and k3 are integers modulo 5. The new algebra describing the NC quintic
reads, in terms of the ωµ and �ν generators of the Z3

5, as

U1U2 = ω1ω2ω
2
3U2U1, U1U3 = � 2

1 � 2
2 U3U1,

U1U4 = ω1ω2�
2
3 U4U1, U2U3 = ω3

1�2�
2
3 U3U2,

U2U4 = � 2
1 ω2

2ω
4
3U4U2, U3U4 = ω1�

3
2 � 2

3 U4U3.

(5.17)

Setting α = ω1ω2ω
2
3, β = �1�2ω

2
3 and γ = ω2

1�
2
2 � 4

3 , one discovers, once again, the BL
algebra (4.7). Therefore equations (5.9) and (5.14) give two representations of the BL algebra.

5.2. Comments on lower-dimensional CY manifolds

The analysis we developed so far applies to complex d-dimensional homogeneous
hypersurfaces with discrete torsion; d � 2. We have discussed the cases d � 3; here
we want to complete this study for lower-dimensional Calabi–Yau manifolds, namely K3 and
the elliptic curve. These are very special cases which deserve some comments. For the K3
surface in CP 3, we have

u4
1 + u4

2 + u4
3 + u4

3 + a0

4∏
µ=1

uµ = 0. (5.18)

This is a quartic polynomial with a Z4 × Z4 symmetry acting on the ui variables as

uµ → wQa
µuµ, (5.19)

where w4 = 1 and aa
µ are integers satisfying the Calabi–Yau condition

∑4
µ=1Q

a
µ = 0.

Choosing Qa
µ as

Q1
µ = (1,−1, 0, 0), Q2

µ = (1, 0,−1, 0) (5.20)

the 3 × 3 matrix Lµν reads

Lµν =

 0 k −k

−k 0 k

k −k 0


 . (5.21)

Therefore the NC K3 algebra reads

U1U2 = U2U1 ei 2πk
4 , U1U3 = U3U1 e−i 2πk

4 , U1U4 = U4U1,

U2U3 = U3U2 ei 2πk
4 , U2U4 = U4U2, U3U4 = U4U3,

(5.22)

where k is an integer modulo 4. Note that one gets similar results by making other choices of
Qa

i such as

Q1
µ = (1,−2, 1, 0), Q2

µ = (1, 1,−2, 0). (5.23)

More general results may also be written down for K3 embedded in WP(δ1,δ2,δ3,δ4). In the case
of a one-dimensional elliptic fibre given by a cubic in P 2

u3
1 + u3

2 + u3
3 + a0

3∏
µ=1

uµ = 0, (5.24)

the constraint equations defining non-commutativity are trivially solved. They show that
Lµν = 0 and so θ12 = 1 leading then to a commutative geometry. NC geometries involving
elliptic curves can be constructed; the idea is to consider orbifolds of products of elliptic
curves. More details are exposed in the following section. Related ideas with fractional
branes will be considered as well.
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6. NC elliptic manifolds

In this section we want to refine the study of the NC Calabi–Yau hypersurface defined in terms
of orbifolds of elliptic curves. The original idea of this construction was introduced first in
[38], see also [72], in connection with the NC orbifold T 6

Z2
2
. The method is quite similar to that

discussed for the quintic and generalized Calabi–Yau geometries in sections 4 and 5. To start,
consider the following elliptic realization of T 2n+2

�
, that is T 2n+2 is represented by the product

of (n + 1) elliptic curves (T 2)⊗(2k+1) where n = 2k. Each elliptic curve is given in Weierstrass
form as

y2
µ = xµ(xµ − 1)(xµ − aµ), µ = 1, . . . , n + 1, (6.1)

with a point added at infinity µ = 1, . . . , n + 1. The system {(xµ, yµ);µ = 1, . . . , n + 1}
defines the complex coordinates of C2n+2 space and aµ are (n + 1) complex moduli. For later
use, we introduce the algebra Ac of holomorphic functions on T 2n+2. This is a commutative
algebra generated by monomials in the xµ and yµ with conditions (6.1). The discrete group �

acts on xµ and yµ as

xµ → x ′
µ = xµ, yµ → y ′

µ = yµωQµ, (6.2)

where ω is an element of the discrete group � and where Qµ are integers which should be
compared with equation (4.24). Note that if one requires equations (6.1) to be invariant under
�, then ω2 should be equal to one that is ω = ±1. If one requires moreover that the monomial∏n+1

µ=1yµ or again the holomorphic ((n + 1), 0) form dy1 ∧ dy2 · · · ∧ dyn+1, to be invariants

under the orbifold action, it follows then that
∏n+1

µ=1ω
Qµ = ω

∑
µQµ = 1. This is equivalent to

n+1∑
µ=1

Qµ = 0, modulo 2, (6.3)

which defines the Calabi–Yau condition for the orbifold T 2n+2

�
. Therefore the � discrete group

is given by � = (Z2)
⊗n. Following the discussion we made in section 4, this equation can

also be rewritten as
n+1∑
µ=1

Qa
µ = 0, modulo 2; a = 1, . . . , n. (6.4)

The four fixed points of the orbifold for each two torus T 2 are located at (xµ = 0, 1, aµ; yµ = 0)

and the point at infinity, i.e. (xµ = ∞; yµ = ∞). The latter can be brought to a fixed finite
point by working in another coordinate patch related to the old one by using the change of
variables:

yµ → y ′
µ = yµ

x2
µ

, xµ → x ′
µ = 1

xµ

. (6.5)

The NC version of the orbifold T 2n+2

�
is obtained by substituting the usual commuting xµ and

yµ variables by the matrix operators Xµ and Yµ respectively. These matrix operators satisfy
the following NC algebra structure:

YµYν = θµνYνYµ, (6.6)

XµXν = XνXµ, (6.7)

XµYν = YνXµ, (6.8)
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with

YµY 2
ν = Y 2

ν Yµ, (6.9)

as is required by equation (6.1) and[
Yµ,

n+1∏
ν=1

Y ν

]
= 0. (6.10)

As for the case of the homogeneous hypersurfaces we considered in sections 4 and 5, here
also the Calabi–Yau condition is fulfilled by imposing that the

∏n+1
ν=1Yν belongs to the centre

of the NC algebra Anc. Now using equations (6.6)–(6.10), one gets the explicit expression of
the θµν by solving the following constraint equations:

θµνθµν = 1, (6.11)

n+1∏
µ=1

θµν = 1, (6.12)

θµνθνµ = 1, θµµ = 1. (6.13)

Note that equation (6.11) is a strong constraint which will have a drastic consequence on the
solving of non-commutativity. Comparing this relation to equation (6.12), one can write

θµν = (−1)Lµν ,

n+1∑
µ=1

Lµν = 0, modulo 2,
(6.14)

where Lµν is the antisymmetric matrix, Lµν = −Lνµ, of integer entries given by

Lµν = �abQ
a
µQb

ν; (6.15)

where �ab = −�ba , and �ab = 1 for a < b. This relation should be compared to
equation (4.25). Moreover, one learns from equation (6.14) that the two cases should be
distinguished. The first one corresponds to the case θµν = −1∀µ = ν, that is,

Lµν = 1; modulo 2. (6.16)

In this case, the constraint (6.12) is fulfilled provided n is even; i.e. n = 2k. So the group � is
given by � =(Z2)

⊗2k . The second case corresponds to the situation where some θµν are equal
to 1:

Lµν = 1; modulo 2; µ = 1, . . . , (n + 1 − r); µ = ν (6.17)

Lµν = 0; modulo 2; µ = (n − r + 2), . . . , n + 1, (6.18)

where we have rearranged the variables so that the matrix takes the form

Lµν =
(

L′
µ′ν ′ 0
0 0

)
(6.19)

In this case equation (6.17) shows that n is even if r is even and odd if r is odd. In what follows
we build the solutions of the NC algebra (6.6)–(6.8) using finite-dimensional matrices.
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6.1. Solution I

Putting relation (6.16) back into equations (6.6)–(6.8), the non-commutativity algebra, which
reads

YµYν = −YνYµ, (6.20)

YµY 2
ν = Y 2

ν Yµ (6.21)

XµXν = XνXµ, (6.22)

XµYν = YνXµ, (6.23)

may be realized in terms of 2k × 2k matrices of the space of matrices M(2k, C). These are
typical relations naturally solved by using the 2k-dimensional Clifford algebra generated by
the basis system {�ı, µ = 1, . . . , 2k}:

{�µ, �ν} = 2δµν, {�i, �2k+1} = 0, (6.24)

where �2k+1 = ∏2k
i=1�

i . We therefore have

Yµ = bµ�µ, µ = 1, . . . , 2k, (6.25)

Y2k+1 = b0�
2k+1, (6.26)

Xµ = xµI2k , (6.27)

where the bµ are complex scalars. This solution has remarkable features: (i) after choosing
a Hermitian � matrices representation, one can see at the fixed planes, where 2k variables
among the (2k + 1) yµ act by zero and all others zero, that there exists a multiplicity of
inequivalent representations for each set of roots xµ of the Weierstrass forms. Therefore, one
can get 2k distinct NC points, as there are 2k irreducible representations corresponding to 2k

eigenvalues of the non-zero matrix variable and so the branes fractionate on the singularity.
(ii) The non-commutative points of the singular planes are then seen to be a 2k cover of
the commutative singular plane, which is a (CP 1)⊗k . The 2k cover is branched around the
four points xk = 0, 1, ak,∞ and hence the NC points form an elliptic manifold T 2k of the
form equation (6.1). Around each of these four points, there is a (Z2) monodromy of
the representations, which is characteristic of the local singularity as measuring the effect
of discrete torsion.

6.2. Solution II

Putting relations (6.17) back into equations (6.6)–(6.8), the resulting NC algebra depends on
the integer r and reads

YµYν = −YνYµ, µ, ν = 1, . . . , (n + 1 − r). (6.28)

YµYν = YνYµ, µ, ν = (n + 2 − r), . . . , (n + 1), (6.29)

YµY 2
ν = Y 2

ν Yµ, µ = 1, . . . , (n + 1), (6.30)

XµXν = XνXµ, (6.31)

XµYν = YνXµ. (6.32)

For r = 2s even, irreducible representations of this algebra are given, in terms of 2k−s × 2k−s

matrices of the space M(2k−s , C), by the 2(k − s)-dimensional Clifford algebra. The result is
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Yµ = bµ�µ, i = 1, . . . , 2(k − s), (6.33)

Y2(k−s)+1 = b0

2(k−s)∏
µ=1

�µ, (6.34)

Yµ = yµI2k−s , i = 2(k − s + 1), . . . , (2k + 1), (6.35)

Xµ = xµI2k−s . (6.36)

At the end of this section, we would like to note that this analysis could be extended to
a general case initiated in [72], where the elliptic curves are replaced by K3 surfaces.
This might be applied to the resolution of orbifold singularities in the moduli space of
certain models, describing a D2-brane wrapped n times over the fibre of an elliptic K3, as
follows [73]

M1,n = Sym(K3) = K3⊗n

Sn

. (6.37)

Here M1,n denotes the moduli space of a D2-brane with charges (1, n) and Sn is the group of
permutation of n elements.

7. Conclusion

In this paper we have studied the NC version of Calabi–Yau hypersurface orbifolds using the
algebraic geometry approach of [39, 40] combined with toric geometry method of complex
manifolds. Actually this study extends the analysis of the NC Calabi–Yau manifolds with
discrete torsion initiated in [40] and exposes explicitly the solving of non-commutativity in
terms of toric geometry data. Our main results may be summarized as follows:

(1) First we have developed a method of getting d complex Calabi–Yau mirror coset manifolds
Ck+1/C∗r , k−r = d, as hypersurfaces in WP d+1. The key idea is to solve the yi invariants
(2.12) and (2.13) of mirror geometry in terms of invariants of the C∗ action of the weighted
projective space and the toric data of Ck+1/C∗r . As a matter of fact, the above-mentioned
mirror Calabi–Yau spaces are described by homogeneous polynomials P�(u) of degree
D = ∑d+2

µ=1δµ = ∑d+2
µ=1

∑r
a=1paq

a
µ, where δµ are projective weights of the C∗ action,

qa
µ are entries of the well-known Mori vectors and the pa are given integers. Then we

have determined the general group � of discrete isometries of P�(u). We have shown by
explicit computation that in general one should distinguish two cases �0 and �cd . First �0

is the group of isometries of the hypersurface
∑d+2

µ=1 u
D/δµ

µ + a0
∏d+2

µ=1(uµ) = 0, generated
by the changes u′

µ = uµ(W)bµ , where the weight vector bµ is given by the sum of Qµ

and ξµ respectively associated with the Calabi–Yau charges and the vertices data of the
toric manifold Md+1

� . In case where the complex deformations are taken into account
(see equation (2.27)), the symmetry group reduces to the subgroup �cd generated by the
changes u′

µ = uµ(W)bµ where now bµ has no ξµ factor.
(2) Using the above results and the algebraic geometry approach, we have developed a method

of building NC Calabi–Yau orbifolds in toric manifolds. Non-commutativity is solved in
terms of the discrete torsion and bilinears of the weight vector aν

µ; see equation (3.11).
Among our results, we have worked out several matrix representations of the NC quintic
algebra obtained in [40] by using various Calabi–Yau toric geometry data. We have also
given the generalization of these results to higher-dimensional Calabi–Yau hypersurface
orbifolds and derived the explicit form of the non-commutative D-tic orbifolds.
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(3) We have extended to higher complex dimensional Calabi–Yau’s realized as toric orbifold
of type T 4k+2

�
with discrete torsion. Due to constraint equations on non-commutativity,

we have shown that in the elliptic realization of the two torii factors, � is constrained to
be equal to Z2k

2 , the real dimension should be 2k + 2 and non-commutativity is solved in
terms of the 2k-dimensional Clifford algebra. We have also discussed the fractional brane
which corresponds to reducible representations of toric Calabi–Yau algebras.
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